Home
Class 10
MATHS
Prove that : sec^(4)theta-tan^(4)theta=1...

Prove that : `sec^(4)theta-tan^(4)theta=1+2tan^(2)theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sec^(4)theta-tan^(4)theta=sec^(2)theta+tan^(2)theta

Prove that : tan^(4)theta + tan^(2)theta = sec^(4)theta - sec^(2) theta

Prove that : tan^(4)theta + tan^(2)theta = sec^(4)theta - sec^(2) theta

Prove that: 2sec^(2)theta-sec^(4)theta-2csc^(2)theta+csc^(4)theta=(1-tan^(8)theta)/(tan^(2)theta)

sec^(4)theta-tan^(4)theta=sec^(2)theta+tan^(2)theta

Prove that sec^4theta-sec^2theta=tan^4theta+tan^2theta .

Prove the identity sec^(4)theta-sec^(2)theta=tan^(4)theta+tan^(2)theta

Prove that 2sec^(2)theta-sec^(4)theta-2csc^(2)theta+csc^(4)theta=(1-tan^(8)theta)/(tan^(4)theta)

Prove :sec^(6)theta=tan^(6)theta+3tan^(2)theta sec^(2)theta+1

Prove the following identity: sec^(4)theta-sec^(2)theta=tan^(4)theta+tan^(2)theta