Home
Class 9
MATHS
In Figure, P is a point in the interi...

In Figure, `P` is a point in the interior of a parallelogram `A B C Ddot` Show that `a r( A P B)+a r( P C D)=1/2a r\ (|""|^(gm)A B C D)` `a r\ ( A P D)+a r\ ( P B C)=a r\ ( A P B)+a r( P C D)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Figure, P is a point in the interior of a parallelogram A B C D . Show that a r( A P B)+a r( P C D)=1/2a r(^(gm)A B C D) a R(A P D)+a r( P B C)=a r( A P B)+a r( P C D)

In Figure, P is a point in the interior of a parallelogram A B C D . Show that a r( A P B)+a r( P C D)=1/2a r(^(gm)A B C D) a R(A P D)+a r( P B C)=a r( A P B)+a r( P C D)

If A B C D is a parallelogram, the prove that a r( A B D)=a r( B C D)=a r( A B C)=a r( A C D) =1/2a r (||^(gm) A B C D)

If A B C D is a parallelogram, then prove that a r\ (\ A B D)=\ a r\ (\ B C D)=\ a r\ (\ A B C)=\ a r\ (\ A C D)=1/2\ a r\ (|""|^(gm)A B C D)

p A N D q are any two points lying on the sides D C a n d A D respectively of a parallelogram A B C Ddot Show that a r( A P B)=a r ( B Q C)dot

p\ A N D\ q are any two points lying on the sides D C\ a n d\ A D respectively of a parallelogram A B C Ddot\ Show that a r( A P B)=a r\ ( B Q C)dot

Diagonals A C\ a n d\ B D of a quadrilateral A B C D intersect each at Pdot Show That: a r(A P B)\ x\ a r\ ( C P D)=\ a r\ (\ A P D)\ \ x\ \ a r\ (\ P B C)

A B C D IS A PARALLELOGRAM AND O is any point in its interior. Prove that: a r\ ( A O B)+\ a r\ ( C O D)=\ a r\ ( B O C)+\ a r( A O D) a r\ ( A O B)+a r\ (C O D)=1/2\ a r(^(gm)A B C D) Given: A parallelogram A B C D\ a n d\ O is a point in its interior. To Prove: a r\ (\ A O B)+\ a r( C O D)=a r\ ( B O C)+a r( A O D)

Diagonals A C\ a n d\ B D of a quadrilateral A B C D intersect each at P . Show that: a r(/_\A P B)\ x \ a r\ (/_\ C P D) = \ a r\ (\ /_\A P D)\ \ x a r\ (\ /_\P B C)

In Figure, A B C D\ a n d\ A E F D are two parallelograms? Prove that: a r\ (\ A P E):\ a r\ (\ P F A)=\ a r\ \ (Q F D)\ : a r\ (\ P F D)