Home
Class 12
MATHS
If f(x)=(a x^2+b)^3, then find the funct...

If `f(x)=(a x^2+b)^3,` then find the function `g` such that `f(g(x))=g(f(x))dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(ax^(2)+b)^(3), then find the function g such that f(g(x))=g(f(x))

If f(x) = (ax^2 +b)^3 , then find the function g such that f(g(x)) = g (f(x)) .

If f(x)=(ax^(2)+b)^(3) , then the function g satisfying f(g(x))=g(f(x)) is given by

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). Then find the function f(x) and g(x) .

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

If f and g are derivable function of x such that g'(a)ne0,g(a)=b" and "f(g(x))=x," then 'f'(b)=

f and g differentiable functions of x such that f(g(x))=x," If "g'(a)ne0" and "g(a)=b," then "f'(b)=