Home
Class 12
MATHS
" Minimum value of "f(x)=(6x^(3)-45x^(2)...

" Minimum value of "f(x)=(6x^(3)-45x^(2)+108x+2)/(2x^(3)-15x^(2)+36x+1)" will occur when "x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of f(x)=(6x^(3)-45x^(2)+108x+2)/(2x^(3)-15x^(2)+36x+1) will occur then x is equal to

Minimum value of f(x)=4x^(3)-12x^(2)-36x is

Minimum value of f(x)=6x^(3) -9x^(2)-36x+24 is

The minimum value of f(x)=2x^2+3x+1 is

Minimum value of f(x)=(x-1)^(2)+(x-2)^(2)+..+(x-10)^(2) occurs at x=

f(x)=2x^(3)-15x^(2)+36x+5 is decreasing in

Find the absolute maximum and minimum values of a function f given by f(x)=2x^(3)-15x^(2)+36x+1 on the interval [1,5]

Find the absolute maximum and minimum values of a function f given by f(x) = 2x^(3) – 15x^(2) + 36x +1 on the interval [1, 5].

Find the absolute maximum and minimum values of a function f given by f(x) = 2x^(3) – 15x^(2) + 36x +1 on the interval [1, 5].