Home
Class 12
MATHS
int(0)^(log(e)2)(e^(x))/(e^(x)+1)dx...

int_(0)^(log_(e)2)(e^(x))/(e^(x)+1)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx=

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int e^(log_(e)x)dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx