Home
Class 12
MATHS
The angle A of the triangle ABC is obtu...

The angle A of the triangle ABC is obtuse, if sec(B+C)=cosec (B-C)=2,find the angles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In an acute angled triangle ABC, if tan(A+B-C)=1 and ,sec(B+C-A)=2, find the value of A,B and C.

If triangle ABC , is obtuse angled at C , then

For triangle ABC prove that sec((A+B)/2)="cosec"C/2

If the angles A,B and C of a triangle ABC satisty the relation 2B=A+C, find the measure of angle B .

In a Delta ABC , if the angle C is obtuse, then tan A ta B =

If angle C of a triangle ABC be obtuse, then (A) 0 1 (C) tan A tan B=1 (D) none of these

If in a /_\ ABC, sum cos3A=1, then (A) /_\ ABC is a rilght angled triangle (B) /_\ABC is an obtuse angled triangle (C) /_\ABC is an acute angled triangle (D) In radius r of /_\ABC is either sqrt(3)(s+a)or sqrt(3)(s+b) or sqrt(3)(s+c)

If ax^(2)+bx+c=0 and 5x^(2)+6x+12=0 have a common root where a, b and c are sides of a triangle ABC , then (A) Delta ABC is obtuse angled (B) Delta ABC is acute angled (C) Delta ABC is right angled (D) no such triangle exists

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle (a) is acute angled (b) is right angled (c) is obtuse angled (d) satisfies the equation sinA+cosA ((a+b))/c

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle a)acute angled b)right angled c)obtuse angled d) sinA+cosA = ((a+b))/c