Home
Class 12
MATHS
" If "int(x^(49)tan^(-1)(x^(50)))/(1+x^(...

" If "int(x^(49)tan^(-1)(x^(50)))/(1+x^(100))dx=k[tan^(-1)(x^(50))]^(2)+c" then "k=

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(49)tan^(-1)(x^(50)))/((1+x^(100)))dx=k[tan^(-1)(x^(50))]^(2)+C, , then k is equal to

int (x^(49)Tan^(-1) (x^(50)))/((1+x^(100)))dx=k (Tan^(-1)(x^(50))^(2)+c rArr k=

int_( then k)^( if )(x^(49)tan^(-1)(x^(50)))/(1+x^(100))dx=k*[tan^(-1)(x^(50))]^(2)+c

int_( then )^((x^(49)tan^(-1)x^(50))/(1+x^(100)))1+x^(100)dx=k[tan^(-1)(x^(50))]^(2)+C

If tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)(x/a) then k=

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

If int (x^(2)-a^(2))/(x^(2)+a^(2))dx=x+k "tan"^(-1)(x)/(a)+c then k=

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

If I = int tan^(-1)((2x)/(1-x^(2)))*dx then I-2x*tan^(-1)x =

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k