Home
Class 12
MATHS
" The mean of the values "0,1,2,3,...,n"...

" The mean of the values "0,1,2,3,...,n" with the corresponding weighs "^(n)C_(0),^(n)C_(1),^(n)C_(2),^(n)C_(3),...,^(n)C_(n)" respectively is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The mean of the values of 0, 1, 2, …., n, having corresponding weight .^(n)C_(0), .^(n)C_(1), .^(n)C_(2), ....., .^(n)C_(n) respectively is :

The mean of then Numbers 0,1,2,3.......n with respective weights ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2)........""^(n)C_(n) is

The mean of the values 0,1,2,3………….n with the corresponding weights ^nC_0 ,^n C_1,....^nC_n respectively is a) (n+1)/2 b) (n-1)/2 c) (2^n-1)/2 d) n/2

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The mean of the values 0,1,2,3,... n,having corresponding weights C(n,0),C(n,1),C(n,2)......C(n,n) respectively is:

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……