Home
Class 12
MATHS
Find the particular solution of the diff...

Find the particular solution of the differential equation `e^x tan y dx + (2-e^x) sec^2 y dy = 0,` given that `y = pi/4` when `x = 0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation 3e^x tan y dx + (1-e^x) sec^2 y dy=0 is

The solution of the differential equation 3e^x tan y dx+(1+e^x)sec^2 y dy=0 is

Find the particular solution of the differential equation e^(x)tan ydx+(2-e^(x))sec^(2)dy=0 given that y=(pi)/(4) when x=0

Find the particular solution of the differential equation : sec^2 x tan y dx- sec^2 y tan x dy=0 , given that y = pi/4,x = pi/4 .

Solve the differential equation e^(x) tan y dx + (1-e^(x))sec^(2) y dy = 0

Find the particular solution of the differential equation : sec^2 x tan y dx- sec^2 y tan x dy=0 , given that y = pi/6,x = pi/3 .

Find the particular solution of the differential equation : sec^2 x tan y dx- sec^2 y tan x dy=0 , given that y = pi/3,x = pi/6 .

Find the general solution of the following differential equation e^x tan y dx + (1-e^x)sec^2 y dy =0