Home
Class 11
MATHS
" 9.) "2x^(2)+2y^(2)-x=0...

" 9.) "2x^(2)+2y^(2)-x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0 , x^(2)+y^(2)-2x-6y+9=0 is

The radical centre of the circles x^(2)+y^(2)=9 , x^(2)+y^(2)-2x-2y-5=0 , x^(2)+y^(2)+4x+6y-19=0 is A) (0,0) (B) (1,1) (C) (2,2) (D) (3,3)

Consider the circle x^(2)+y^(2)=9 and x^(2)+y^(2)-10x+9=0 then find the length of the common chord of circle is

If x=9 is the chord of contact of the hyperbola x^(2)-y^(2)=9 then the equation of the corresponding pair of tangents is (A)9x^(2)-8y^(2)+18x-9=0(B)9x^(2)-8y^(2)-18x+9=0(C)9x^(2)-8y^(2)-18x-9=0(D)9x^(^^)2-8y^(^^)2+18x+9=0'

The centres of the three circles x^(2)+y^(2)-10x+9=0,x^(2)+y^(2)-6x+2y+1=0,x^(2)+y^(2)-9x-4y+2=0

The centres of the three circles x^(2)+y^(2)-10x+9=0, x^(2)+y^(2)-6x+2y+1=0, x^(2)+y^(2)-9x-4y+2=0 lie on the line

The equation of the circle touching Y-axis at (0,3) and making intercept of 8 units on the axis (a) x^(2)+y^(2)-10x-6y-9=0 (b) x^(2)+y^(2)-10x-6y+9=0 (c) x^(2)+y^(2)+10x-6y-9=0 (d) x^(2)+y^(2)+10x+6y+9=0

The circles whose equations are x^(2)+y^(2)+10x-2y+22=0 and x^(2)+y^(2)+2x-8y+8=0 touch each other. The circle which touch both circles at, the point of contact and passing through (0,0) is, 1) 9(x^(2)+y^(2))-15x-20y=0, 2) 5(x^(2)+y^(2))-18x-80y=0 3) 7(x^(2)+y^(2))-18x-80y=0, 4) x^(2)+y^(2)-9x-40y=0 ]]

The radical centre of the circles x^(2) + y^(2) - x + 3y-3 = 0 , x^(2) + y^(2) - 2x + 2y + 2= 0 , x^(2) + y^(2) + 2x +3y - 9 = 0 is