Home
Class 11
MATHS
x=sin^(-1)t" and "y=log(1-t^(2))," then ...

x=sin^(-1)t" and "y=log(1-t^(2))," then "(d^(2)y)/(dx^(2))|_(t=1/2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin^(-1)t and y=log(1-t^(2)), then ((d^(2)y)/(dx^(2)))_(t=(1)/(2)) is

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=a sin t and y=a(cos t+log tan(t)/(2)) find (d^(2)y)/(dx^(2))

If x=a sin t and y=a(cos t+(log tan t)/(2)) find (d^(2)y)/(dx^(2))

x=a sin t and y= a (cos t + log "tan"(t)/(2)) then find (d^(2)y)/(dx^(2)) .