Home
Class 12
MATHS
If y = e^(sin^(-1)x) and z = e^(-cos^...

If `y = e^(sin^(-1)x) ` and `z = e^(-cos^(-1)x)` , prove that the value of `dy/dz` is independent of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(sin^(-1)x) and z=e^(-cos^(-1)x) , prove that the value of (dy)/(dz) independent of x.

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

If y=sin x^(@) and z=log_(10)x , then the value of ( dy)/(dz) is -

If y=sin^(-1)(cos x)+cos^(-1)(sin x) , prove that (dy)/(dx)=-2

If y=sin^(-1)(cos x)+cos^(-1)(sin x) , prove that (dy)/(dx)=-2

If y=(a^(cos^-1x))/(1+a^(cos^-1x)) and z= a^(cos^-1x) , then dy/dz=

If sin y+e^(-x cos y)=e , then the value of (dy)/(dx) at (1, pi) is -

If y=sin^-1x and z=2cos^-1x , find dy/dz .

If y=sin^(-1)xandz=cos^(-1)(sqrt(1-x^(2))) , then (dy)/(dz) is equal to