Home
Class 12
MATHS
If (log)3x=a and (log)7x=b , then which ...

If `(log)_3x=a` and `(log)_7x=b ,` then which of the following is equal to `(log)_(21)x ?` `a b` (b) `(a b)/(a^(-1)+b^(-1))` `1/(a+b)` (d) `1/(a^(-1)+b^(-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_3x=aa n d(log)_7x=b , then which of the following is equal to (log)_(21)x ? a. a b b. (a b)/(a^(-1)+b^(-1)) c. 1/(a+b) d. 1/(a^(-1)+b^(-1)

If log_(3)x=a and log_(7)x=b, then which of the following is equal to log_(21)x?ab(b)(ab)/(a^(-1)+b^(-1))(1)/(a+b)(d)(1)/(a^(-1)+b^(-1))

If (log_(3)x=aand(log)_(7)x=b, then which of the following is equal to (log)_(21)x? a.ab b.(ab)/(a^(-1)+b^(-1)) c.(1)/(a+b) d.(1)/(a^(-1)+b^(-1))

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If (a^(log_b x))^2-5 a^(log_b x)+6=0, where a >0, b >0 & a b!=1, then the value of x can be equal to (a) 2^(log_b a) (b) 3^(log_a b) (c) b^(log_a2) (d) a^(log_b3)

(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)-1)rArr a-2b=