Home
Class 11
MATHS
If (x^2+x(a-2)+(a-2))/(x^2+2x+4)<0 for...

If `(x^2+x(a-2)+(a-2))/(x^2+2x+4)<0` for atleast one real x, then a can be-

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x to sqrt(2))(It) (x^(2) - 2)/(x^(2) + sqrt(2)x - 4) is equal to

underset(x to sqrt(2))(It) (x^(2) - 2)/(x^(2) + sqrt(2)x - 4) is equal to

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), (x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

If lim_(xto2) (tan(x-2).(x^(2)+(k-2)x-2k))/((x^(2)-4x+4))=5 , then find the value of k.

If lim_(xto2) (tan(x-2).(x^(2)+(k-2)x-2k))/((x^(2)-4x+4))=5 , then find the value of k.

If x≠ − 1 , 2 and 5, then the simplified value of {(2(x^3 -8))/(x^2-x -2) xx (x^2+ 2x +1)/(x^2 -4x-5) ÷ (x^2 +2x+4)/(3x-15)} is equal to: यदि x≠ − 1 , 2 और 5 है तो {(2(x^3 -8))/(x^2-x -2) xx (x^2+ 2x +1)/(x^2 -4x-5) ÷ (x^2 +2x+4)/(3x-15)} का सरलीकृत मान बराबर हैः

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2) ,((x-1)^2, (x-2)^2, (x-3)^2), ((x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

If f(x) is continuous at x=-2 , where f(x)=(2)/(x+2)+(1)/(x^(2)-2x+4)-(24)/(x^(3)+8) , for x!= -2 , then f(-2)=

(x+(1)/(x))^(2)-(x-(1)/(x))^(2)=? 1) x^(2)+(1)/(x^(2)) 2) 4 3) 2x^(2)+(1)/(2x^(2)) 4) 2x^(2)+4+(1)/(2x^(2))

Simplify : (x-2y)(x^2-2y)+(y+2x)(x^2+4y)-(3x-2y)(x^2-4y) .