Home
Class 11
MATHS
Length of the latus rectum of an ellipse...

Length of the latus rectum of an ellipse

Promotional Banner

Similar Questions

Explore conceptually related problems

In Q.(13) length of the latus rectum of the ellipse is

The length of the latus rectum of the ellipse 3x^(2) + y^(2) = 12 is …….

If the length of the eccentricity of an ellipse is (3)/(8) and the distance between the foci is 6 units, then the length of the latus rectum of the ellipse is

If the length of the eccentricity of an ellipse is (3)/(8) and the distance between the foci is 6 units, then the length of the latus rectum of the ellipse is

Length of the latus rectum of the ellipse (x^(2))/(25)+(y^(2))/(9)=1 is

find the length of the latus rectum of the ellipse (x^(2))/(9) +(y^(2))/(16) = 1

The length of the latus rectum of the ellipse 5x ^(2) + 9y^(2) =45 is

The length of the latus rectum of the ellipse 2x^(2) + 3y^(2) - 4x - 6y - 13 = 0 is