Home
Class 12
MATHS
If x=sec theta-cos theta, y =sec^(n)the...

If `x=sec theta-cos theta, y =sec^(n)theta-cos^(n) theta` and `(x^(2)+4)((dy)/(dx))^(2)=k(y^(2)+4)` then the value of k is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sectheta-costheta,y=sec^(10)theta-cos^(10)theta and (x^(2)+4)((dy)/(dx))^(2)=k(y^(2)+4) . Then k is equal to

If x = sec theta - cos theta , y = sec^(10) theta - cos^(10) theta and (x^(2) + 4) ((dy)/(dx))^(2) = k (y^(2) + 4), then k =

If x=sec theta-cos theta and y=sec^(n)theta-cos^(n)theta then show that (x^(2)+4)((dy)/(dx))^(2)=n^(2)(y^(2)+4)

If x = sec theta - cos theta , y= sec^(n)theta - cos^(n) theta then ((x^2+4)/(y^2+4))((dy)/(dx))^2 =

If x=sectheta-costheta,y=sec^(n)theta-cos^(n)theta , then ((dy)/(dx))^(2) is :

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)

If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)