Home
Class 12
MATHS
যদি a একক বাহুবিশিষ্ট সমবাহু ত্রিভুজের ত...

যদি a একক বাহুবিশিষ্ট সমবাহু ত্রিভুজের তিনটি শীর্ষ `A(x1,y2), B(x2,y2) `এবং `C(x3,y3) `হয় তবে প্রমাণ করো যে,
`abs([x1,y1,2],[x2,y2,2],[x3,y3,2])^2= 3a^(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the co-ordinates of the vertices of an equilateral triangle with sides of length a are (x_1,y_1), (x_2, y_2), (x_3, y_3), then |[x_1,y_1,1],[x_2,y_2,1],[x_3,y_3,1]|=(3a^4)/4

If the co-ordinates of the vertices of an equilateral trianlg with sides of length 'a' are (x_1,y_1),(x_2,y_2),(x_3,y_3) , then Prove that |{:(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1):}|^2=(3/4)a^4.

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (X_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

If (x_1,y_1) , (x_2,y_2) and (x_3,y_3) are the vertices of a triangle whose area is k square units, then |{:(x_1,y_1,4),(x_2,y_2,4),(x_3,y_3,4):}|^2 is

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

If (x_1-x_2)^2+(y_1-y_2)^2=144 ,(x_2-x_3)^2+(y_2-y_3)^2=25 and (x_3-x_1)^2+(y_3-y_1)^2=169 , then the value of |[x_1,y_1, 1],[x_2,y_2 ,1],[x_3,y_3, 1]|^2 is 30 (b) 30^2 (c) 60 (d) 60^2

If (x_1-x_2)^2+(y_1-y_2)^2=a^2 , (x_2-x_3)^2+(y_2-y_3)^2=b^2 , (x_3-x_1)^2+(y_3-y_1)^2=c^2 , and k|[x_1,y_1, 1],[x_2,y_2, 1],[x_3,y_3, 1]|=(a+b+c)(b+c-b)(c+a-b)xx(a+b-c) , then the value of k is 1 b. 2 c. 4 d. none of these