Home
Class 12
MATHS
Express M in terms of N: 1/2 log(3) ...

Express M in terms of N:
`1/2 log_(3) M +log_(3)N=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Express M in terms of N: log_(10)N=3 -2 log_(10)M

Given : log_(3) m = x and log_(3) n = y (i) Express 3^(2x - 3) in terms of m. (ii) Write down 3^(1 - 2y + 3x) in terms of m and n. (iii) If 2 log_(3) A = 5x - 3y , find A in terms of m and n.

Given log_(2)x = m and log_(5) y = n (i) Express 2^(m-3) in terms of x. (ii) Express 5^(3n + 2) in terms of y.

If 1/3log_(3)M+3log_(3)N=1+log_(0.008)5 , then

(1)/(3)log_(3)M+3log_(3)N=1+log_(0)*0085

N=n! , where ngt2 . Find the value of (log_(2)N)^(-1)+(log_(3)N)^(-1)+(log_(4)N)^(-1)+. . . . . (log_(n)N)^(-1) .

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If log_(l)x,log_(m)x and log_(n)x are in arithmetic progression show that , log n^(2) = log (ln) log_(l)m