Home
Class 11
MATHS
The length of the latusrectum of the hyp...

The length of the latusrectum of the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=-1` , is

Promotional Banner

Similar Questions

Explore conceptually related problems

Length of latus -rectum of the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 is ................. .

Prove that the length of the latusrection of the hyperbola x^(2)/a^(2) -y^(2)/b^(2) =1 " is" (2b^(2))/a

The slope of the tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( x_(1),y_(1)) is-

The length of the latusrectum of the ellipse 3x^(2)+y^(2)=12 is

The length of the latusrectum of the ellipse 3x^(2)+y^(2)=12 is

The positive end of the Latusrectum of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a>b)" is

The equation of the latusrectum of the hyperbola ((x-4)^(2))/(16)-((y-3)^(2))/(20)=1 are

The length of the latusrectum of the parabola 2{(x-a)^(2)+(y-a)^(2)}=(x+y)^(2), is

The length of the latusrectum of the parabola 2{(x-a)^(2)+(y-a)^(2)}=(x+y)^(2), is