Home
Class 12
MATHS
Let f: R rarr R be a differentiable func...

Let `f: R rarr R` be a differentiable function with `f(0)=0.` If `y=f(x)` satisfies the differential equation `dy/dx=(2+5y)(5y-2),` then the value of `lim_(x rarr - infty) f (x)` is …....

Text Solution

Verified by Experts

The correct Answer is:
`(0.40)`

We have,
`dy/dx=(2+5y)(5y-2)`
`rArr dy/(25y^(2)-4)=dx rArr 1/25(dy/(y^(2)-4/25))=dx`
On integrating both sides, we get
`1/25 int dy/(y^(2)-(2/5)^(2))=int dx`
`rArr 1/25xx1/(2xx2/5)log abs((y-2//5)/(y+2//5))=x+C`
`rArr log abs((5y-2)/(5y+2))=20(x+C)`
`rArr abs((5y-2)/(5y+2))=Ae^(20x)[therefore e^(20c)=A]`
when `x=0 rArr y = 0, than A = 1`
`therefore abs((5y-2)/(5y+2))=e^(20x)`
`lim_(x rarr - infty) abs((5f(x)-2)/(5f(x)+2))=lim_(x rarr - infty) e^(20x)`
`rArr lim_(n rarr - infty) abs((5f(x)-2)/(5f(x)+2))=0`
`rArr lim_(n rarr - infty) 5 f(x)-2=0`
`rArr lim_(n rarr - infty) f (x) = 2/5=0.4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a differentiable function with f(0)=0. If y=f(x) satisfies the differential equation (dy)/(dx)=(2+5y)(5y-2), then the value of (lim)_(x rarr oo)f(x) is

Let f:R to R be a differentiable function with f(0)=0 . If y=f(x) satisfies the differential equation (dy)/(dx)=(2+5y)(5y-2) , then the value of lim_(x to oo) f(x) is……………….

If y=f(x) satisfy differential equation ( dy )/(dx)-y=e^(x) with f(0)=1 then value of f'(0) is

Let f:R rarr R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f'(y)+f'(x)f(y) for all x,y in R. Then,the value of (log)_(e)(f(4)) is

A function f:R rarr R satisfies the differential equation 2xy+(1+x^(2))y'=1 where f(0)=0 then

Let f:R rarr R be a differential function satisfy f(x)=f(x-y)f(y)AA x,y in R and f'(0)=a,f'(2)=b then f'(-2)=

Let f be a function satisfying the condition lambda f(xy)=(f(x))/(y)+(f(y))/(x)AA x,y>0 If f(x) is differentiable and f(1)=1 then the value of lim_(x rarr oo)x*f(x) is