Home
Class 12
MATHS
Let f :(0, infty)to R be a differentiabl...

Let `f :(0, infty)to R` be a differentiable function such that `f'(x)=2-(f(x))/x` for all `x in (0,infty)` and `f (1)ne1`. Then

A

(a) `lim_(x to 0+)f'(1/x)=1`

B

(b) `lim_(x to 0+)x f'(1/x)=2`

C

(c) `lim_(x to 0+)x^2f'(x)=0`

D

(d) `abs(f(x))le 2` for all `x in(0,2)`

Text Solution

Verified by Experts

Here, `f'(x)=2-(f(x))/x`
or `dy/dx+y/x=2` [i.e. linear differential equation in y ]
Integrating Factor, `IF= e^(int1/xdx)=e^(logx)=x`
`therefore` Required solutionn is `y cdot (IF) = int Q(IF)dx=C`
`rArr y(x)=int 2(x)dx+C`
`rArr yx=x^(2)+c`
`therefore y=x+C/x [therefore C ne 0,as f(1)ne1]`
(a) `lim_(xrarr0^(+))f'(1/x)=lim_(xrarr0^(+)) (1-Cx^(2))=1`
`therefore` Option (a) is correct.
(b) `lim_(xrarr0^(+))x f(1/x)=lim_(xrarr0^(+)) (1-Cx^(2))=1`
`therefore` Option (b) is incorrect.
`lim_(xrarr0^(+))x^(2) f'(x)=lim_(xrarr0^(+)) (x^(2)-C)=-C ne 0`
`therefore` (c) is incorrect.
(d) `f(x)=x+C/x,C ne 0`
For `C gt0, lim_(x rarr 0^(+)) f(x)=infty `
`therefore` Function is not bounded in (0,2).
`therefore` Option (d) is incorrect.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(0,oo)rarr R be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)=1, then

If f:R rarr R is a differentiable function such that f(x)>2f(x) for all x in R and f(0)=1, then

if f:R rarr R is a differentiable function such that f'(x)>2f(x) for all x varepsilon R, and f(0)=1, then

Let f be a differentiable function defined on R such that f(0) = -3 . If f'(x) le 5 for all x then

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)

Let f be a differentiable function such that f(0)=e^(2) and f'(x)=2f(x) for all x in R If h(x)=f(f(x)) ,then h'(0) is equal to

Let f:(-1,1)rarrR be a differentiable function satisfying (f'(x))^4=16(f(x))^2 for all x in (-1,1) , f(0)=0. The number of such functions is

Let f(x) be a differentiable function on x in R such that f(x+y)=f(x). F(y)" for all, "x,y . If f(0) ne 0, f(5)=12 and f'(0)=16 , then f'(5) is equal to

Let f :R to R be a continous and differentiable function such that f (x+y ) =f (x). F(y)AA x, y, f(x) ne 0 and f (0 )=1 and f '(0) =2. Let f (xy) =g (x). G (y) AA x, y and g'(1)=2.g (1) ne =0 The number of values of x, where f (x) g(x):