Home
Class 12
MATHS
Let the functions f: [0,1] to R be d...

Let the functions `f: [0,1] to R ` be defined by
`f(x) = (4^(x))/(4^(x)+2)` Then the value of
`f(1/40)+f(2/20) +f(3/40) +....+ (39/40) - f(1/2)` is _______

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f:R rarr R be defined by f(x)=tan(cot^(-1)(2^(x))-(pi)/(4)) then

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

If the function f: R to R defined by f(x)=(4^(x))/(4^(x)+2), then show that f(1-x)=1-f(x), and hence deduce the value of f((1)/(4))+2f((1)/(2))+f((3)/(4)) .

If the function f:R rarr R defined by f(x)=(4^(x))/(4^(x)+2) then show that f(1-x)=1-f(x) and hence deduce the value of f( 1/ 4 )+2f( 1 /2 )+f( 3/4 ) .

If a function f:RtoR is defined by f(x){{:(2x,xgt3),(x^(2),1lexle3),(3x,xlt1):} Then the value of f(-1)+f(2)+f(4) is

f:R rarr R is given by f(x)=(a^(x))/(a^(x)+sqrt(a))AA x in R , then f((1)/(40))+f((2)/(40))+......+f((39)/(40))-f((1)/(2))=

Let f:[-1,1] to R_(f) be a function defined by f(x)=(x)/(x+2) . Show that f is invertible.