Home
Class 10
MATHS
O is any point inside a rectangle ABCD. ...

O is any point inside a rectangle ABCD. Prove that `OB^(2)+OD^(2)=OA^(2)+OC^(2)`.
DEDUCTION In the given figure, O is a point inside a rectangle ABCD such that `OB=6cm, OD=8 cm and OA=5 cm,` find the length of OC.

Text Solution

Verified by Experts

GIVEN O is point inside a rectangle ABCD.
TO PROVE `OB^(2)+OD^(2)=OA^(2)+OC^(2)`.
CONSTRUCTION Through O, drawn `POQ||BC` so that P lies on AB and Q lies on DC.

PROOF We have
`POQ||BC rArr PQ bot AB and QP bot DC`
`rArr angle BPQ =90^(@) and angle CQP=90^(@)`
`:. BP=CQ` [ oppositie sides of a rectangle]
`DQ=AP` [ opposite sides of a rectangle]
From right `Delta OPB`, we have `OD^(2)=OP^(2)+BP^(2)`
From right `Delta OQD`, we have `OD^(2)=OQ^(2)+DQ^(2)`
From right `Delta OPA`, we have `OA^(2)=OP^(2)+AP^(2)`
From right `Delta OQC`, we have `OC^(2)=OQ^(2)+CQ^(2)`.
`:. OB^(2)+OD^(2)=OP^(2)+OQ^(2)+BP^(2)+DQ^(2)= OP^(2)+OQ^(2)+CQ^(2)+AP^(2) [ :. BP =CQ and DQ= AP]`
`=(OP^(2)+AP^(2))+(OQ^(2)+CQ^(2))`
`=OA^(2)+OC^(2)`
Hence, `OB^(2)+OD^(2)=OA^(2)+OC^(2)`
DEFUCTION Let OC=xm
`OB^(2)+OD^(2)=OA^(2)+OC^(2)`
`rArr 6^(2)+8^(2)=5^(2)+x^(2)`
`rArr x^(2)=36+64-25=75`
`rArr x=sqrt(75)=5sqrt(3)=(5xx1.732)=8.66 rArr OC =8.66` cm
Promotional Banner

Similar Questions

Explore conceptually related problems

In the given figure,O is the centre of a circle such that OA=5cm,AB=8cm and OD perp AB meeting AB at C. Find the length of CD.

In the given figure, O is the centre of the circle. AB is tangent. AB =12 cm and OB = 13 cm . Find OA:

'O' is any point in the interior of a Delta ABC prove that AB+BC+CA>OA+OB+OC

.In given figure OC is perpendicular segment drawn from centre O to chord AB. If OB=5 cm and OC= 3cm then find the length of AB

If O is a point within a quadrilateral ABCD, show that OA+OB+OC+OD gt AC+BD.

In a rectangle ABCD, diagonal AC and BD intersect each other at 0.If AB=32 cm and AD = 24 cm, find the length of OD.

O is a point situated inside a rectangle ABCD. If sides OA, OC and OD are 6 cm, 8 cm and 6 cm respectively, then find the value of OB-

Diagonal AC of a rectangle ABCD is produced to the point E such that AC:CE =2:1, AB=8 cm and BC =6cm . Find the length of DE.

In the given figure, OC.OD = OA.OB Show that : angle A = angle D " and " angle C = angle B.