Home
Class 10
MATHS
Find the distance between the points : ...

Find the distance between the points :
(i) A(9, 3) and B(15, 11) (ii) A(7, -4) and B(-5, 1)
(iii) A(-6, -4) and B(9, -12) (iv) A(1, -3) and B(4, -6)
(v) P(a+b, a-b) and Q(a-b, a+b)
(vi) P(a sin `alpha`, a cos `alpha`) and Q (a cos `alpha`, -a sin `alpha`)

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance between two points in a coordinate plane, we use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] where \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two points. Let's apply this formula to each pair of points given in the question. ### (i) A(9, 3) and B(15, 11) 1. Identify the coordinates: - \(A(9, 3)\) → \(x_1 = 9\), \(y_1 = 3\) - \(B(15, 11)\) → \(x_2 = 15\), \(y_2 = 11\) 2. Substitute into the distance formula: \[ d = \sqrt{(15 - 9)^2 + (11 - 3)^2} \] \[ = \sqrt{(6)^2 + (8)^2} \] \[ = \sqrt{36 + 64} \] \[ = \sqrt{100} \] \[ = 10 \] ### (ii) A(7, -4) and B(-5, 1) 1. Identify the coordinates: - \(A(7, -4)\) → \(x_1 = 7\), \(y_1 = -4\) - \(B(-5, 1)\) → \(x_2 = -5\), \(y_2 = 1\) 2. Substitute into the distance formula: \[ d = \sqrt{(-5 - 7)^2 + (1 - (-4))^2} \] \[ = \sqrt{(-12)^2 + (5)^2} \] \[ = \sqrt{144 + 25} \] \[ = \sqrt{169} \] \[ = 13 \] ### (iii) A(-6, -4) and B(9, -12) 1. Identify the coordinates: - \(A(-6, -4)\) → \(x_1 = -6\), \(y_1 = -4\) - \(B(9, -12)\) → \(x_2 = 9\), \(y_2 = -12\) 2. Substitute into the distance formula: \[ d = \sqrt{(9 - (-6))^2 + (-12 - (-4))^2} \] \[ = \sqrt{(15)^2 + (-8)^2} \] \[ = \sqrt{225 + 64} \] \[ = \sqrt{289} \] \[ = 17 \] ### (iv) A(1, -3) and B(4, -6) 1. Identify the coordinates: - \(A(1, -3)\) → \(x_1 = 1\), \(y_1 = -3\) - \(B(4, -6)\) → \(x_2 = 4\), \(y_2 = -6\) 2. Substitute into the distance formula: \[ d = \sqrt{(4 - 1)^2 + (-6 - (-3))^2} \] \[ = \sqrt{(3)^2 + (-3)^2} \] \[ = \sqrt{9 + 9} \] \[ = \sqrt{18} \] \[ = 3\sqrt{2} \] ### (v) P(a+b, a-b) and Q(a-b, a+b) 1. Identify the coordinates: - \(P(a+b, a-b)\) → \(x_1 = a+b\), \(y_1 = a-b\) - \(Q(a-b, a+b)\) → \(x_2 = a-b\), \(y_2 = a+b\) 2. Substitute into the distance formula: \[ d = \sqrt{((a-b) - (a+b))^2 + ((a+b) - (a-b))^2} \] \[ = \sqrt{(-2b)^2 + (2a)^2} \] \[ = \sqrt{4b^2 + 4a^2} \] \[ = 2\sqrt{a^2 + b^2} \] ### (vi) P(a sin α, a cos α) and Q(a cos α, -a sin α) 1. Identify the coordinates: - \(P(a \sin \alpha, a \cos \alpha)\) → \(x_1 = a \sin \alpha\), \(y_1 = a \cos \alpha\) - \(Q(a \cos \alpha, -a \sin \alpha)\) → \(x_2 = a \cos \alpha\), \(y_2 = -a \sin \alpha\) 2. Substitute into the distance formula: \[ d = \sqrt{(a \cos \alpha - a \sin \alpha)^2 + (-a \sin \alpha - a \cos \alpha)^2} \] \[ = \sqrt{(a(\cos \alpha - \sin \alpha))^2 + (-a(\sin \alpha + \cos \alpha))^2} \] \[ = a\sqrt{(\cos \alpha - \sin \alpha)^2 + (\sin \alpha + \cos \alpha)^2} \] \[ = a\sqrt{(\cos^2 \alpha - 2\sin \alpha \cos \alpha + \sin^2 \alpha) + (\sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha)} \] \[ = a\sqrt{2(\cos^2 \alpha + \sin^2 \alpha)} \] \[ = a\sqrt{2} \] ### Summary of Distances: 1. Distance between A(9, 3) and B(15, 11) = 10 units 2. Distance between A(7, -4) and B(-5, 1) = 13 units 3. Distance between A(-6, -4) and B(9, -12) = 17 units 4. Distance between A(1, -3) and B(4, -6) = \(3\sqrt{2}\) units 5. Distance between P(a+b, a-b) and Q(a-b, a+b) = \(2\sqrt{a^2 + b^2}\) units 6. Distance between P(a sin α, a cos α) and Q(a cos α, -a sin α) = \(a\sqrt{2}\) units
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the distance between the following points : (i) A(-6, 4) and B(2, -2) (ii) A(-5, -1) and B(0,4)

Find the distance between the following pairs of points : (i) (2,3) , (4,1) (ii) (-5,7) , (-1,3) (iii) (a,b) , (-a,-b)

Find the distance between the following points . (i) A(0,0) ,B (-5,12) (ii) M (-4,-3) , N (2,-1) (iii) P (3,-4) ,Q(-3,4) (iv) L(4,1) , M (1,-3) (v) P(-1,1) ,Q(5,-7)

Find the distance between the following pairs of points :(1)(2,3),(4,1)(ii)(-5,7),(-1,3)(iii)(a,b),(-a,-b)

Find the distance between (i) A(5,1,2) and B(4,6,-1) (iii) R(1,-3,4) and S(4,-2,-3)

Show that the following points are collinear: (i) A(2, -2), B(-3, 8) and C(-1, 4) (ii) A(-5, 1), B(5, 5) and C(10, 7) (iii) A(5, 1), B(1, -1) and C(11, 4) (iv) A(8, 1), B(3, -4) and C(2, -5)

Find the equations of the circles the end points of whose diameter are as follows : (i) (0,6) and (6,0) (ii) (-1,3) and (2,4) (iii) (A+b,a-b) and (a-b,a+b) (iv) (0,0) and (2,2)

Find the value of b^(2) - 4ac , if (i) a= 3,b= 9 , c = 6 (ii) a= 2, b = - 8 , c = 8 (iii) a= 1, b = 1 , c = 1 .

If A = { 3 , 5 , 7 , 9 , 4 }, B = { 1, 3, 5 } , C = { 2, 4, 6 ,7 } ; then A - { B ∩ C } =