Home
Class 10
MATHS
Find the area of Delta ABC whose vertice...

Find the area of `Delta ABC` whose vertices are : (i) A(1, 2), B (-2, 3) and C(-3, -4)
(ii) A(-5, 7), B(-4, -5) and C(4, 5)
(iii) A(3, 8), B(-4, 2) and C(5, -1)
(iv) A(10, -6), B(2, 5) and C(-1, 3)

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC with given vertices, we can use the formula for the area of a triangle based on its vertices in a coordinate plane. The formula is: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] where \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) are the coordinates of the vertices A, B, and C respectively. ### (i) A(1, 2), B(-2, 3), C(-3, -4) 1. Assign the coordinates: - \( A(1, 2) \) → \( x_1 = 1, y_1 = 2 \) - \( B(-2, 3) \) → \( x_2 = -2, y_2 = 3 \) - \( C(-3, -4) \) → \( x_3 = -3, y_3 = -4 \) 2. Substitute into the area formula: \[ \text{Area} = \frac{1}{2} \left| 1(3 - (-4)) + (-2)(-4 - 2) + (-3)(2 - 3) \right| \] 3. Calculate each term: - \( 1(3 + 4) = 1 \times 7 = 7 \) - \( -2(-4 - 2) = -2 \times -6 = 12 \) - \( -3(2 - 3) = -3 \times -1 = 3 \) 4. Combine the terms: \[ \text{Area} = \frac{1}{2} \left| 7 + 12 + 3 \right| = \frac{1}{2} \left| 22 \right| = \frac{22}{2} = 11 \] 5. Final area: \[ \text{Area} = 11 \text{ square units} \] ### (ii) A(-5, 7), B(-4, -5), C(4, 5) 1. Assign the coordinates: - \( A(-5, 7) \) → \( x_1 = -5, y_1 = 7 \) - \( B(-4, -5) \) → \( x_2 = -4, y_2 = -5 \) - \( C(4, 5) \) → \( x_3 = 4, y_3 = 5 \) 2. Substitute into the area formula: \[ \text{Area} = \frac{1}{2} \left| -5(-5 - 5) + (-4)(5 - 7) + 4(7 - (-5)) \right| \] 3. Calculate each term: - \( -5(-10) = 50 \) - \( -4(-2) = 8 \) - \( 4(12) = 48 \) 4. Combine the terms: \[ \text{Area} = \frac{1}{2} \left| 50 + 8 + 48 \right| = \frac{1}{2} \left| 106 \right| = \frac{106}{2} = 53 \] 5. Final area: \[ \text{Area} = 53 \text{ square units} \] ### (iii) A(3, 8), B(-4, 2), C(5, -1) 1. Assign the coordinates: - \( A(3, 8) \) → \( x_1 = 3, y_1 = 8 \) - \( B(-4, 2) \) → \( x_2 = -4, y_2 = 2 \) - \( C(5, -1) \) → \( x_3 = 5, y_3 = -1 \) 2. Substitute into the area formula: \[ \text{Area} = \frac{1}{2} \left| 3(2 - (-1)) + (-4)(-1 - 8) + 5(8 - 2) \right| \] 3. Calculate each term: - \( 3(3) = 9 \) - \( -4(-9) = 36 \) - \( 5(6) = 30 \) 4. Combine the terms: \[ \text{Area} = \frac{1}{2} \left| 9 + 36 + 30 \right| = \frac{1}{2} \left| 75 \right| = \frac{75}{2} = 37.5 \] 5. Final area: \[ \text{Area} = 37.5 \text{ square units} \] ### (iv) A(10, -6), B(2, 5), C(-1, 3) 1. Assign the coordinates: - \( A(10, -6) \) → \( x_1 = 10, y_1 = -6 \) - \( B(2, 5) \) → \( x_2 = 2, y_2 = 5 \) - \( C(-1, 3) \) → \( x_3 = -1, y_3 = 3 \) 2. Substitute into the area formula: \[ \text{Area} = \frac{1}{2} \left| 10(5 - 3) + 2(3 - (-6)) + (-1)(-6 - 5) \right| \] 3. Calculate each term: - \( 10(2) = 20 \) - \( 2(9) = 18 \) - \( -1(-11) = 11 \) 4. Combine the terms: \[ \text{Area} = \frac{1}{2} \left| 20 + 18 + 11 \right| = \frac{1}{2} \left| 49 \right| = \frac{49}{2} = 24.5 \] 5. Final area: \[ \text{Area} = 24.5 \text{ square units} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of Delta ABC whose vertices are A(2, 7), B(3, -1) and C(-5, 6).

Find the centroid of Delta ABC whose vertices are A(2, 2), B(-4, -4) and C(5, -8).

Find the area of the triangle whose vertices are: (i) A(3, 8), B(-4, 2) and C(5, -1) (ii) A(-2, 4), B(2, -6) and C(5, 4) (iii) A(-8, -2), B(-4, -6) and C(-1, 5) (iv) P(0, 0), Q(6, 0) and R(4, 3) (v) P(1, 1), Q(2, 7) and R(10, 8)

Find the area of triangle ABC whose vertices are A(-3, -5), B(5,2) and C(-9,-3).

Using vectors, find the area of Delta ABC whose vertices are (i) A(1,1,2),B(2,3,5) and C(1,5,5) (ii) A(1,2,3),B(2,-1,4) and C(4,5,-1) (iii) A(3,-1,2),B(1,-1,-3) and C(4,-3,1) (iv) A ( 1,-1,2),B(2,1,-1) and C(3,-1,2).

Find the angles of /_\ABC whose vertices are A(-1,3,2), B(2,3,5) and C(3,5,-2) .

Show that the following points are collinear: (i) A(2, -2), B(-3, 8) and C(-1, 4) (ii) A(-5, 1), B(5, 5) and C(10, 7) (iii) A(5, 1), B(1, -1) and C(11, 4) (iv) A(8, 1), B(3, -4) and C(2, -5)

Find the ate area of the triangle whose vertices are : A (1,2,3) , B (2,-1,4) and C (4,5,-1).

Find the area of the quadrilateral whose vertices are A(1,1),B(3,4),C(5,-2) and D(4,-7)