Home
Class 11
MATHS
int (0) ^(1) x tan ^(-1) x dx =...

`int _(0) ^(1) x tan ^(-1) x dx =`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) x^(3) tan^(-1) x " "dx =

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

int_0^(1) tan^(-1) x dx =

int _(0)^(1) (tan ^(-1))/(x ) dx =

int_(0)^(1)x cos(tan^(-1)x)dx

2int_ (0) ^ ((1) / (sqrt (2))) (sin ^ (- 1) x) / (x) dx-int_ (0) ^ (1) (tan ^ (- 1) x) / (x) dx =

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

If 2 int_(0)^(1) tan^(-1) x dx = int_(0)^(1) cot^(-1) (1- x+x^(2))dx , then int_(0)^(1) tan^(-1) (1-x+x^(2))dx is equal to