Home
Class 11
MATHS
EVALUATE USING LOG TABLE (0.9876 xx (16....

EVALUATE USING LOG TABLE
`(0.9876 xx (16.42)^(2))/((4.567)^(1/3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((0.9876 \times (16.42)^{2}) / ((4.567)^{1/3})\) using logarithms, we can follow these steps: ### Step 1: Write the expression in logarithmic form Let \( x = \frac{0.9876 \times (16.42)^{2}}{(4.567)^{1/3}} \). ### Step 2: Apply logarithmic properties Taking logarithm on both sides, we have: \[ \log x = \log(0.9876 \times (16.42)^{2}) - \log((4.567)^{1/3}) \] ### Step 3: Use the properties of logarithms Using the properties of logarithms: - \(\log(a \times b) = \log a + \log b\) - \(\log(a^{n}) = n \cdot \log a\) We can rewrite the equation as: \[ \log x = \log(0.9876) + \log((16.42)^{2}) - \log((4.567)^{1/3}) \] \[ \log x = \log(0.9876) + 2 \cdot \log(16.42) - \frac{1}{3} \cdot \log(4.567) \] ### Step 4: Look up logarithm values Using a logarithm table, we find: - \(\log(0.9876) \approx -0.0054\) - \(\log(16.42) \approx 1.2152\) - \(\log(4.567) \approx 0.6600\) ### Step 5: Substitute the values into the equation Substituting the logarithm values: \[ \log x = -0.0054 + 2 \cdot 1.2152 - \frac{1}{3} \cdot 0.6600 \] ### Step 6: Calculate each term Calculating the terms: - \(2 \cdot 1.2152 = 2.4304\) - \(\frac{1}{3} \cdot 0.6600 \approx 0.2200\) ### Step 7: Combine the results Now, substituting back: \[ \log x = -0.0054 + 2.4304 - 0.2200 \] \[ \log x = 2.2050 \] ### Step 8: Find the antilogarithm To find \( x \), we take the antilogarithm: \[ x = 10^{2.2050} \] ### Step 9: Calculate the final value Using a calculator: \[ x \approx 126.4 \] Thus, the evaluated value of the expression \((0.9876 \times (16.42)^{2}) / ((4.567)^{1/3})\) is approximately **126.4**. ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF CONIC SECTIONS

    RS AGGARWAL|Exercise EXERCISE 25|5 Videos
  • ARITHMETIC PROGRESSION

    RS AGGARWAL|Exercise Exercise 11F (Very Short-Answer Type Questions)|17 Videos

Similar Questions

Explore conceptually related problems

(16)^(0.15)xx(2)^(0.4)=

(42xx3.2)div (16xx1.5)=?

The value of (0.16)^("log"_(0.25)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

the value of [(0.16)^(log_(0.25)((1)/(3)+(1)/(32)+(1)/(3^(3))+...............+oo)]^((1)/(2))) is

6.4 xx 3.8 xx 4.2 xx 0.3 =

Find : (-2)^0 times (-3)^4 times (0.7)^3

Using Distributive property Find [(9)/(16)times(4)/(12)]+[(9)/(16)times(-3)/(9)]