Home
Class 12
MATHS
If y=e^x(sinx+cosx), then prove that, ...

If `y=e^x(sinx+cosx)`, then prove that,
`(d^2y)/(dx^2)-2dy/dx+2y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^x(sinx+cosx) prove that (d^2y)/(dx^2)-2(dy)/(dx)+2y=0 .

If y = e^x (sinx + cosx) , prove that (d^2y)/(dx^2)- 2(dy)/(dx) + 2y = 0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y = 2sinx + 3cosx , then prove that y + (d^2y)/(dx^2) = 0

If y=5cosx-3sinx ,then prove that (d^(2)y)/(dx^(2))+y=0

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .