Home
Class 12
MATHS
int[e^((3log x))*(x^(4)+1)^(-1)]dx...

int[e^((3log x))*(x^(4)+1)^(-1)]dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(3log x)(x^(4))dx

inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

int e^(3 log x) (x^4 + 1)^(-1) dx =............. A) (1/2) tan^(-1) ( x^e ) + c B) (1/4) tan^(-1) ( x^2 ) + c C) (1/4) log ( x^4 + 1) + c D) (1/2) log |( x^4 + 1)| + c

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

If int_(log 2)^(x)(1)/(e^(x)-1)dx = log""(3)/(2) , show that x = log 4

If int_(ln 2)^(x) (e^(x)-1)^(-1)dx= ln (3/2) then x=

Write a value of int e^(3log x)x^(4)dx

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is