Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that: `|a^2+1a b a c a bb^2+1b cc a c b c^2+1|=(1+a^2+b^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

By using properties of determinants.Show that: det[[a^(2)+1,ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=(1+a^(2)+b^(2)+b^(2))

By using the properties of determinants,prove that |[a^2+1,ab ,ac],[ab,b^2+1,bc],[ca ,cb,c^2+1]|=1+a^2+b^2+c^2

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .