Home
Class 12
MATHS
यदि 3p^(2)=5p+2 तथा 3q^(2)=5q+2 जहाँ p!...

यदि `3p^(2)=5p+2` तथा `3q^(2)=5q+2` जहाँ `p!=q` जिसके मूल `3p-2q` तथा `3q-2p` है ।
समीकरण के मूल होंगे

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3p^(2)=5p+2 and 3q^(2)=5q+2 where p!=q,pq is equal to

I. p^(2)+5p+6 = 0 II. q^(2) + 3q + 2 = 0

If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p and 3q-2p is

If 3p^2 = 5p+2 and 3q^2 = 5q+2 where p!=q, pq is equal to

If 3p^2 = 5p+2 and 3q^2 = 5q+2 where p!=q, pq is equal to

If 3p^2 = 5p+2 and 3q^2 = 5q+2 where p!=q, pq is equal to

If 3p^2 = 5p+2 and 3q^2 = 5q+2 where p!=q, pq is equal to

If 3p^(2) =5p +2 and 3q^(2) = 5q +2 where p ne q, then the equations whose roots are 3p-2q and 3q-2p is :