Home
Class 12
MATHS
The value of (nC0)/n+(nC1)/(n+1)+(nC2)/(...

The value of `(nC_0)/n+(nC_1)/(n+1)+(nC_2)/(n+2)+......+(n C_n)/(2n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (nC_(0))/(n)+(nC_(1))/(n+1)+(nC_(2))/(n+2)+......+(nC_(n))/(2n) is equal to

The value of (^nC_(0))/(n)+(^nC_(1))/(n+1)+(^nC_(2))/(n+2)+....+(n)/(2n) is equal to a.int_(0)^(1)x^(n-1)(1-x)^(n)dxbint_(1)^(2)x^(n)(x-1)^(n-1)dxc*int_(1)^(2)x^(n-1)(1+x)^(n)dx d.int_(0)^(1)(1-x)^(n-1)dx

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

(nC_(0))^(2)+(nC_(1))^(2)+(nC_(2))^(2)+......+(nC_(n))^(2)

If n=5 , then (^nC_(0))^(2)+(^nC_(1))^(2)+(^nC_(2))^(2)+....+(^nC_(5))^(2) is equal to

The value of nC_0. ^nC_n +^nC_1 . ^nC_(n-1)++……..+^nC_n . ^nC_0

the A.M. of nC_(0),nC_(1),nC_(2),.........,nC_(n) is

(n+2)nC_0(2^(n+1))-(n+1)nC_1(2^(n))+(n)nC_2(2^(n-1))-.... is equal to