Home
Class 12
MATHS
[" 7.Consider "f(x)=lim(n rarr oo)(x^(n)...

[" 7.Consider "f(x)=lim_(n rarr oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n))" for "x>0,x!=1,f(1)=0" ,then "],[" (a) "f" is continuous at "x=1],[" (b) "f" has a finite discontinuity at "x=1],[" (c) "f" has an infinite or oscillatory discontinuity at "x=1],[" (d) "f" has a removal type of discontinuity at "x=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

Consider f(x) = lim_(x-oo)(x^n-sinx^n)/(x^n+sinx^n) for x>0,x!=1,f(1)=0 then

Letf(x) = lim_( n to oo) (x^(n)-sin x^(n))/(x^(n)+sin x^(n)) " for" xgt 0, x ne 1,and f(1)=0 Discuss the continuity at x=1.

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

(2) lim_(n rarr0) (n!sin x)/(n)

Lef f(x)=lim_(x rarr0)(x^(2n)sin^(n)x)/(x^(2n)-sin^(2n)x),x!=0 and f(0)=L for some n. If f(x) is continuous at x=0, then