Home
Class 11
MATHS
सिद्ध कीजिए कि ((2n)!)/(n!) = 2^(n)...

सिद्ध कीजिए कि
`((2n)!)/(n!) = 2^(n) *{1 *3*5*...*(2n-1)}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

frac{(2n)!}{(1.3.5….(2n-1))n!} =