Home
Class 10
MATHS
" Prove that "sin^(2)(pi)/(6)+cos^(2)(pi...

" Prove that "sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=(-1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)-(1)/(2)(pi)/(4)=-(1)/(2)

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

Prove thet sin^(2) (pi//6) + cos^(2) (pi//3)- tan^(2) (pi//4) = (-1)/(2)

Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2

Find the value of the sin^(2)((pi)/(6))+cos^(2)((pi)/(3))-tan^(2)((pi)/(4))

sin^(2)""(2pi)/(3)+ cos^(2)""(5pi)/6-tan^(2)""(3pi)/4=

Prove that sin^2(pi/4) + cos^2(pi/6) - tan^2(pi/4) = 1/4

Prove that: sin^2frac (pi)(6)+cos^2frac (pi)(3)-tan^2frac (pi)(4)=-1/2

Prove that 2sin^2(pi/2) + cos^2(pi/3) + tan ^2(pi/4) = 13/4