Home
Class 9
MATHS
(2^n+2^(n-1))/(2^(n+1)-2n)=3/2...

`(2^n+2^(n-1))/(2^(n+1)-2n)=3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove: (2^n+2^(n-1))/(2^(n+1)-2^n)=3/2

Prove that: (i)\ sqrt(1/4)+\ (0. 01)^(-1/2)-\ (27)^(2/3)=3/2 (ii)\ (2^n+\ 2^(n-1))/(2^(n+1)-2^n)=3/2

Prove that (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

(2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

Prove that: sqrt((1)/(4))+(0.01)^(-(1)/(2))-(27)^((2)/(3))=(3)/(2) (ii) (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

to prove (2^(n)+2^(n-1))/(2^(n+1)-2^(n)))=(3)/(2)(3^(-3)*6^(2)*sqrt(98))/(5^(2)*((1)/(25))^((1)/(3))*(15)^(-(4)/(3))*3^((1)/(3)))=28sqrt(2)

[ If 2 is the sum of infinity of a G.P.,whose first clement is 1 ,then the sum of the first n terms is [ 1) (2^(n)-1)/(2^(n)), 2) (2^(n)-1)/(2^(n-1)), 3) (2^(n-1)-2)/(2), 4) (2^(n-1)-1)/(2^(n))]]

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =