Home
Class 12
MATHS
The fundamental period of the function f...

The fundamental period of the function `f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

The fundamental period of the function f(x)=4cos^(4)((x-pi)/(4 pi^(2)))-2cos((x-pi)/(2 pi^(2))) is equal to:

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2)))

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2))) is k pi^(3) then the value of [1/k] (where [ ] denote the G.I.F )

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

Define f : R to R by f(x) = 4 cos^(4)((x-pi)/(4pi^(2))) - 2 cos((x-pi)/(2pi^(2))) AA x in R If the period of f is kpi^(3) , then k = ……………..

Verify Rolles theorem for function f(x)=cos2(x-pi/4) on [0,pi/2]

If the fundamental period of function f(x)=sin x+cos(sqrt(4-a^(2)))x is 4 pi, then the value of a is/are