Home
Class 12
MATHS
Prove that the minimum value of ((a+x)(b...

Prove that the minimum value of `((a+x)(b+x))/((c+x))a ,b > c ,x >-c` is `(sqrt(a-c)+sqrt(b-c))^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the minimum value of ((a+x)(b+x))/((c+x)), x gt - c is [sqrt(a-c)+sqrt(b-c)]^(2) .

Show that the minimum value of (x+a)(x+b)//(x+c) where a > c ,b > c , is (sqrt(a-c)+sqrt(b-c))^2 for real values of x > -c .

Show that the minimum value of (x+a)(x+b)//(x+c)dotw h e r ea > c ,b > c , is (sqrt(a-c)+sqrt(b-c))^2 for real values of x > -c

Show that the minimum value of (x+a)(x+b)//(x+c)dotw h e r ea > c ,b > c , is (sqrt(a-c)+sqrt(b-c))^2 for real values of x >-cdot

Show that the minimum value of (x+a)(x+b)/(x+c) wherea >c,b>c is (sqrt(a-c)+sqrt(b-c))^(2) for real values of x>.

IF x gt -c then the minimum value of (( a+x) (b +x))/( c+x) is

Prove that for x> -c , the minimum value of f(x) = (a+x) (b+x)/(c+x) is 2sqrt((c-a)(c-b)) + a + b - 2c , given (c-a) (c-b) > 0 .

The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)