Home
Class 12
MATHS
cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^...

`cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

cos[2sin^(-1)sqrt((1-x)/2)]=

Prove that 1/2cos^-1x=sin^-1sqrt((1-x)/2)=cos^-1sqrt((1+x)/2) .

cos[2Sin^(-1)sqrt((1-x)/2)]=

Prove that following : cos^-1 x = 2 sin^-1 sqrt(1-x)/(2) = 2cos^-1 sqrt(1+x)/(2), |x| le 1

cos[2sin^(-1)sqrt((1-x)/(2))]

(1) / (2) cos ^ (- 1) x = sin ^ (- 1) sqrt ((1-x) / (2)) = cos ^ (- 1) sqrt ((1 + x) / (2 )) = (tan ^ (- 1) (sqrt (1-x ^ (2)))) / (1 + x)

2sin^(-1) (sqrt(1-x)/2) = cos^(-1) (_______).

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

If x takes negative permissible values , then sin^(-1) x= a) cos^(-1)sqrt(1-x^2) b) -cos^(-1)sqrt(1-x^2) c) cos^(-1)sqrt(x^2-1) d) pi-cos^(-1)sqrt(1-x^2)