Home
Class 11
MATHS
प्रथम सिद्धांत से सिद्ध कीजिए कि: (d)/(d...

प्रथम सिद्धांत से सिद्ध कीजिए कि: `(d)/(dx)((1)/(f(x)))=(-f'(x))/({f(x)}^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the first principle,prove that (d)/(dx)((1)/(f(x)))=(-f'(x))/([f(x)]^(2))

Using first principles,prove that (d)/(dx){(1)/(f(x))}=-(f'(x))/({f(x)}^(2))

Using first principles, prove that (d)/( dx) ((1)/( f(x))) = (-f' (x))/( {f (x) }^2) .

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

Using first principles,prove that (d)/(dx)[(1)/(f(x))]=-(f'(x))/((f(x))^(2))

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

(d)/(dx)[tan^(-1)((log(ex))/(log(e//x)))]=(1)/(xf(x))," then "f(x)=