Home
Class 12
PHYSICS
Two soap bubbles of radii a and b coales...

Two soap bubbles of radii `a` and `b` coalesce to form a single bubble of radius `c`. If the external pressure is `P`, find the surface tension of the soap solution.

A

`sqrt(x^2 + y^2)`

B

`sqrt(x + y)`

C

`x + y`

D

`(x + y)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Volume of soap bubble of radius x is `V_x = 4/3 pi x^3`
Volume of soap bubble of radius y is `V_y = 4/3 pi y^3`
Let T be the surface tension of soap bubble. Let `P_x` and` P_y` are the excess of pressure inside these two soap bubbles, then
` P_x = (4T)/(x)` and `P_y = (4T)/(y)`
These two soap bubbles coalesce to form a new soap bubble of radius z under isothermal conditions. Let `V_z` and `P_z` be the volume and excess of pressure inside this new soap bubble, then
`V_z = 4/3 pi z^3 , P_z = (4T)/(z)`
Assuming the external pressure is negligible as compared to internal pressure and the new bubble is formed under isothermal conditions, so Boyle.s law holds good.
` therefore P_xV_x + P_y V_y = P_z V_z`
`(4T)/(x) xx 4/3 pi x^3 + (4T)/(y) xx 4/3 pi y^3 = (4T)/(z) xx 4/3 pi z^3`
`x^2 + y^2 = z^2 " or " z = sqrt(x^2 + y^2)`
Promotional Banner

Topper's Solved these Questions

  • BULK PROPERTIES OF MATTER

    MTG-WBJEE|Exercise WB JEE WORKOUT (ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • BULK PROPERTIES OF MATTER

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (SINGLE OPTION CORRECT TYPE)|22 Videos
  • ATOMS MOLECULES AND CHEMICAL ARITHEMETIC

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS CATEGORY 1: SINGLE OPTION CORRECT TYPE (1 MARK)|3 Videos
  • CURRENT ELECTRICITY

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

Under isothermal condition two soap bubbles of radii r_(1) and r_(2) coalesce to form a single bubble of radius r. The external pressure is p_(0) . Find the surface tension of the soap in terms of the given parameters.

Two soap bubbles of radii a and b coalesce to form a single bubble of radius c. If the external pressure is P, show that the surface tension T is given by T = P(c^(3) - a^(3) - b^(3))/(4(a^(2) + b^(2) - c^(2))

A soap bubble of radius r is formed inside another soap bubble of radius R (gt r) . The atmospheric pressure is P_(0) and surface tension of the soap solution is T. Calculate change in radius of the smaller bubble if the outer bubble bursts. Assume that the excess pressure inside a bubble is small compared to P_(0) .

Find the work to be performed in order to blow a soap bubble of radius R if the outside air pressure is equal to p_0 and the surface tension of the soap water solution is equal to alpha .

Two identical soap bubbles each of radius r and of the same surface tension T combine to form a new soap bubble of radius R . The two bubbles contain air at the same temperature. If the atmospheric pressure is p_(0) then find the surface tension T of the soap solution in terms of p_(0) , r and R . Assume process is isothermal.

Two identical soaop bubbles each of radius r and of the same surface tension T combine to form a new soap bubble od radius R . The two bubbles contain air at the same temperature. If the atmospheric pressure is p_(0) then find the surface tension T of the soap solution in terms of p_(0), r and R . Assume process is isothermal.

Two soap bubbles of radii 2 cm and 4 cm join to form a double bubble in air, then radius of. curvature of interface is