Home
Class 12
MATHS
The sum of the series 1/(1!(n-1)!)+1/(3!...

The sum of the series `1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!)` is = (A) `1/(n!2^n)` (B) `2^n/n!` (C) `2^(n-1)/n!` (D) `1/(n!2^(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

Find the sum of the series 1.n+2(n-1)+3(n-2)+.....n.1 .

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.

Find the sum of the series: 1. n+2.(n-1)+3.(n-2)++(n-1). 2+n .1.

Sum of the series S_(n) =(n) (n) + (n-1) (n+1) + (n-2) (n+2) + …+ 1(2n-1) is

Find the sum of the series: 1.n+2.(n-1)+3.(n-2)+...+(n-1).2+n.1

Find the sum of the series 1xx n+2(n-1)+3xx(n-2)+...+(n-1)xx2+n xx1

Find the sum of the series 1*n+2*(n-1)+3*(n-2)+4*(n-3)+....(n−1).2+n.1"