Home
Class 11
MATHS
sin (A+B) * sin (A-B)=...

`sin (A+B) * sin (A-B)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

((a^(2) - b^(2) sin A sin B) /( 2 sin ( A- B)))

sin A sin (A + 2B) -sin B sin (B + 2A) = sin (AB) sin (A + B)

sin A sin (A + 2B) sin B sin (B + 2A) = sin (AB) sin (A + B)

sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

sin (A+B+C)+sin(A-B-C)+sin(A+B-C)+sin(A-B+C)=

If sqrt(2)cos A = cos B + cos^(3)B , and sqrt(2)sin A = sin B- sin^(3)B then sin(A-B)=

In any ABC, prove that: Delta=(a^(2)-b^(2))/(2)(sin A sin B)/(sin(A-B))

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)