Home
Class 12
MATHS
If f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \...

If `f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \ \ ,\ \ \ x!=pi/2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ ,\x=pi/2` is continuous at `x=pi/2` , then `k` is equal to (a) 0 (b) `1/2` (c) 1 (d) -1

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(sin(cos x)-cos x)/((pi-2x)^(2)),x!=(pi)/(2);k,x=(pi)/(2) is continuous at x=(pi)/(2), then k is equal to 0 (b) (1)/(2)(c)1(d)-1

f(x)={(sin(cos x)-cos x)/((pi-2x)^(3)),quad if x+-(pi)/(2) and k,quad if x=(pi)/(2) is continuous at x=(pi)/(2), then k

If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):} is continuous at x = pi//2 , then : lambda =

Find the value of k, the function, f(x)={:{((1-sinx)/((pi-2x)^(2))", "x!=(pi)/(2)),(" k, "x=(pi)/(2)):} is continuous at x=(pi)/(2) .

For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi)/(2)),(3",", "if " x =(pi)/(2)):} is continuous at x=(pi)/(2) then k?

sin^(-1)(cosx)=(pi)/(2)-x is valid for

Let f(x) = (1-sin x)/((pi - 2x)^(2)),"where x" ne pi//2 and f(pi//2) = k . The value of k which makes f continuous at pi//2 is :

If f(x)=(1-sin x)/((pi-2x)^(2)), when x!=(pi)/(2) and f((pi)/(2))=lambda, the f(x) will be continuous function at x=(pi)/(2), where lambda=?( a) (1)/(8)( b ) (1)/(4) (c) (1)/(2) (d) none of these