Home
Class 12
MATHS
f(x)={[(1-cos kx)/(x sin x)," if "x!=0],...

f(x)={[(1-cos kx)/(x sin x)," if "x!=0],[(1)/(2)," if "x=0]" at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((1-cos kx)/(x sin x),x!=0),((1)/(2),x=0)} is continuous at x=0, find k,((1)/(2),x=0)}

f(x)=(1-cos alpha x)/(x sin x), for x!=0,(1)/(2), for x=0 If f is continuous at x=0, then

The value of k (k lt 0) for which the function ? defined as f(x) ={((1-cos kx)/(x sin x),","x ne 0),((1)/(2),","x=0):} is continuous at ? = 0 is:

The value of k(k f(x)= {((1-cos kx)/(x(sin x)),x!=0 or (1)/(2),x=0} ,is continous at x=0 is :

If the function f(x) = {((1-cos kx)/(x sin x),x ne 0),((1)/(2), x = 0):} is continuous at x = 0, then the value (s) of k are:

Find the values (s) of k so that the following function is continuous at x=0 f(x ) = {{:( (1- cos kx )/( x sin x ) , " if " x ne o),( 1/2, I f x=0):}

Find the values of k so that the function f is continuous at the indicated point f(x) = {((1- cos (kx))/(x^(2))",","if " x ne 0),((1)/(2)",","if " x= 0):} at x= 0

if f(x)=(1-cos ax)/(x sin x)" for "x ne 0, f(0)=1//2 is continuous at x=0 then a=

f(x)=(cos3x-cos4x)/(x sin2x),x!=0,f(0)=(7)/(4) then f(x) at x=0is,x!=0,f(0)=(7)/(4)