Home
Class 14
MATHS
((1)/(2))^(-2)+((1)/(3))^(-2)+((1)/(4))^...

((1)/(2))^(-2)+((1)/(3))^(-2)+((1)/(4))^(-2)

Promotional Banner

Similar Questions

Explore conceptually related problems

EXAMPLE 13. Simplify: (frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

S=((1)/(2))^(2)+(((1)/(2))^(2)1)/(3)+(((1)/(2))^(3)1)/(4)+(((1)/(2))^(4)1)/(5)+......, then (a)S=ln8-2( b) S=ln((4)/(e))(c)S=ln4+1(d) none of these

Value of (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))dots(1-(1)/(85^(2)))

The product (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(11^(2)))(1-(1)/(12^(2))) is equal to

The reciprocal of the value of: lim_(x rarr oo)(1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))...(1-(1)/(n^(2)))is

The reciprocal of the value of lim_(ntooo) (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))...(1-(1)/(n^(2))) is__________.

prove that (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) for all natural numbers,n>=1(1-(1)/(n^(2)))=(n+1)/(2n)

If ninNN , then by principle of mathematical induction prove that, Use mathematical induction to prove (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2))). . . .(1-(1)/((n+1)^(2)))=(n+2)/(2n+2) for all positive integers n.

Prove the following by the principle of mathematical inductiten: (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) or all natural numbers n>=2.