Home
Class 11
MATHS
Prove that: sin 3x + sin 2x + sin x = 4 ...

Prove that: `sin 3x + sin 2x + sin x = ``4 sin x cos``x/2``cos``(3x)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin 3x + sin 2x - sinx = 4sin x cos "" x/2 cos "" (3x)/(2)

sin 3x + sin 2x - sin = 4sin x cos "" x/2 cos "" (3x)/(2)

sin 3x + sin 2x - sin = 4sin x cos "" x/2 cos "" (3x)/(2)

sin 3x + sin 2x - sin = 4sin x cos "" x/2 cos "" (3x)/(2)

Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x )

Prove that: (i) sin 3x+"sin" 2x-"sin" x = 4 sin x cos((x)/(2))cos((3x)/(2)) (ii) ("sin" 3x+"sin" x)"sin" x+(cos 3x-cos x)cos x=0.

Prove that sin 5 x cos 2x + cos 6 x sin 3 x = sin 8x cos x

Prove that sin x + sin 3x + sin 5x + sin 7x=4 sin 4x cos 2x cos x.

Prove that: (sin 3x + sin x) sin x + (cos 3x -cos x) cos x = 0

Show that sin 3 x+sin 2 x-sin x=4 sin x cos (x/2) cos ((3 x)/2)