Home
Class 12
MATHS
If the normal to the curve y=f(x) at (1,...

If the normal to the curve `y=f(x)` at (1, 2) make an angle `(3pi)/(4)` with positive X-axis, then
`f'(1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normal to the curve y =f(x) at the point (1, 2) makes an angle 3pi//4 with the positive x-axis, then f'(1) is

If the normal to curve y = f (x) at the point (3,4) makes an angle (3pi)/(4) with positive x-axis then f'(3) equals:

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3pi)/4 with the positive x-axis, then f'(3)= (a) -1 (b) -3/4 (c) 4/3 (d) 1

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3pi)/4 with the positive x-axis, then f'(3)= (a) -1 (b) -3/4 (c) 4/3 (d) 1

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3pi)/4 with the positive x-axis, then f'(3)= (a) -1 (b) -3/4 (c) 4/3 (d) 1

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3pi)/4 with the positive x-axis, then f'(3)= (a) -1 (b) -3/4 (c) 4/3 (d) 1

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3 pi)/(4) with the positive x-axis,then f'(3)=(a)-1(b)-(3)/(4) (c) (4)/(3)(d)1

If the normal to the curve y = f(x) at the point (3, 4) makes an angle 3pi//4 with the positive x-axis, then f'(3) is :