Home
Class 14
MATHS
Assume that sqrt(13)=3.605 (approximat...

Assume that
`sqrt(13)`=3.605 (approximately)
`sqrt(130)`=11.40 (approximately)
Find the value of:
`sqrt(1.3)+sqrt(1300)+sqrt(0.013)`

A

36.164

B

36.304

C

37.304

D

37.167

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{1.3} + \sqrt{1300} + \sqrt{0.013} \), we can break down each term using the approximations given for \( \sqrt{13} \) and \( \sqrt{130} \). ### Step 1: Calculate \( \sqrt{1.3} \) We can express \( 1.3 \) as \( \frac{13}{10} \): \[ \sqrt{1.3} = \sqrt{\frac{13}{10}} = \frac{\sqrt{13}}{\sqrt{10}} \] Since \( \sqrt{10} \) is approximately \( 3.162 \) (since \( \sqrt{10} \approx \sqrt{(3.16)^2} \)), we can substitute: \[ \sqrt{1.3} \approx \frac{3.605}{3.162} \approx 1.139 \] ### Step 2: Calculate \( \sqrt{1300} \) We can express \( 1300 \) as \( 130 \times 10 \): \[ \sqrt{1300} = \sqrt{130 \times 10} = \sqrt{130} \times \sqrt{10} \] Using the approximation \( \sqrt{130} \approx 11.40 \): \[ \sqrt{1300} \approx 11.40 \times 3.162 \approx 36.1 \] ### Step 3: Calculate \( \sqrt{0.013} \) We can express \( 0.013 \) as \( \frac{13}{1000} \): \[ \sqrt{0.013} = \sqrt{\frac{13}{1000}} = \frac{\sqrt{13}}{\sqrt{1000}} \] Since \( \sqrt{1000} \approx 31.622 \): \[ \sqrt{0.013} \approx \frac{3.605}{31.622} \approx 0.114 \] ### Step 4: Combine all the results Now, we can add all three results together: \[ \sqrt{1.3} + \sqrt{1300} + \sqrt{0.013} \approx 1.139 + 36.1 + 0.114 \] Calculating this gives: \[ 1.139 + 36.1 + 0.114 \approx 37.353 \] ### Final Answer Thus, the value of \( \sqrt{1.3} + \sqrt{1300} + \sqrt{0.013} \) is approximately \( 37.353 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1)/((sqrt(4)-sqrt(3)))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

Given that sqrt(13)=3.605 and sqrt(130)=11.40 find the value of sqrt(1.3)+sqrt(1300)+sqrt(0.013) (a) 36.164 (b) 36.304 (c) 37.164 (d) 37.304