Home
Class 14
MATHS
On simplification of ((2.644)^(2)-(2.356...

On simplification of `((2.644)^(2)-(2.356)^(2))/(0.288)` We get:

A

1

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{(2.644)^2 - (2.356)^2}{0.288}\), we can follow these steps: ### Step 1: Recognize the Difference of Squares The expression in the numerator, \((2.644)^2 - (2.356)^2\), is a difference of squares. We can use the identity: \[ A^2 - B^2 = (A - B)(A + B) \] where \(A = 2.644\) and \(B = 2.356\). ### Step 2: Apply the Difference of Squares Formula Using the formula, we can rewrite the numerator: \[ (2.644)^2 - (2.356)^2 = (2.644 - 2.356)(2.644 + 2.356) \] ### Step 3: Calculate \(A - B\) and \(A + B\) Now we calculate \(2.644 - 2.356\) and \(2.644 + 2.356\): - \(2.644 - 2.356 = 0.288\) - \(2.644 + 2.356 = 5.000\) ### Step 4: Substitute Back into the Expression Now we substitute these values back into the expression: \[ \frac{(0.288)(5.000)}{0.288} \] ### Step 5: Simplify the Expression Now we can simplify the expression: \[ \frac{0.288 \times 5.000}{0.288} = 5.000 \] ### Final Answer Thus, the simplified result of the expression is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

On simplification factor of ""((5^(n+2)-6*5^(n+1))/(13*5^n-2*5^(n+1))) is

On simplification [((x)^(ab))/((x)^(a^(2)+b^(2)))]^(a+b)*[((x)^(b^(2)+c^(2)))/((x)^(bc))]^(b+c)*[((x)^(ca))/((x)^(c^(2)+a^(2)))]^(c+) reduces to

On simplification [((x)^(ab))/((x)^(a^(2)+b^(2)))]^(a+b)*[((x)^(b^(2)+c^(2)))/((x)^(bc))]^(b+c)*[((x)^(ca))/((x)^(c^(2)+a^(2)))]^(c+) reduces to